python-book
  • 目录
  • 第2章 Python基础 (旧版)
    • 2.1 上节拾遗
    • 2.2 二进制
    • 2.3 字符编码
    • 2.4 基本数据类型——数字
    • 2.5 基本数据类型——字符串
    • 2.6 基本数据类型——列表
    • 2.7 基本数据类型——元组
    • 2.8 可变、不可变数据类型和hash
    • 2.9 基本数据类型——字典
    • 2.10 基本数据类型——集合
    • 2.11 collections模块
    • 2.12 本章小结
      • 习题答案
  • 第3章 Python基础—文件操作&函数(旧版)
    • 3.1 上节拾遗
    • 3.2 三元运算
    • 3.3 字符编码转换
    • 3.4 文件处理
    • 3.5 函数
    • 3.6 函数进阶
    • 3.7 生成器&迭代器
    • 3.8 本章小节
      • 习题答案
  • 第4章 Python基础—常用模块(旧版)
    • 4.1 模块、包介绍和相关语法
    • 4.2 time & datetime 模块
    • 4.3 random 模块
    • 4.4 os 模块
    • 4.5 sys 模块
    • 4.6 shutil 模块
    • 4.7 json & pickle 模块
    • 4.8 shelve 模块
    • 4.9 xml 模块
    • 4.10 ConfigParser 模块
    • 4.11 hashlib 模块
    • 4.12 subprocess 模块
    • 4.13 logging 模块
      • python日志重复输出
    • 4.14 re 模块
    • 4.15 软件开发目录规范
    • 4.16 本章小结
      • 习题答案
  • 第5章 面向对象编程设计与开发
    • 面向对象介绍
    • 类、实例、属性、方法详解
    • 5.1 什么是面向对象的程序设计
    • 5.2 类与对象
    • 5.3 属性查找与绑定方法
    • 5.4 小结
    • 5.5 继承与派生
    • 5.6 组合
    • 5.7 抽象类
    • 5.8 多态与多态性
    • 5.9 封装
    • 5.10 绑定方法与非绑定方法
    • 5.11 内置方法
    • 5.11 内置方法(补充)
    • 5.12 元类
    • 5.13 面向对象的软件开发
    • 5.14 领域模型
    • 5.15 异常处理
    • 5.16 本章总结
  • 第6章 网络编程-SOCKET开发
    • 6.1 C/S架构介绍
    • 6.2 TCP/IP 各层详解
    • 6.3 Socket介绍
    • 6.4 Socket代码实例
    • 6.5 粘包现象与解决方案
    • 6.6 通过socket发送文件
    • 6.7 本章总结
  • 第7章 并发编程
    • 7.1 操作系统介绍
      • 附录1:操作系统介绍
    • 7.2 并发编程之多进程
      • 7.2.1 进程理论
      • 7.2.2 开启进程的两种方式
      • 7.2.3 join方法
      • 7.2.4 守护进程
      • 7.2.5 互斥锁
      • 7.2.6 队列
      • 7.2.7 生产者消费者模型
    • 7.3 并发编程之多线程
      • 7.3.1 线程理论
      • 7.3.2 开启线程的两种方式
      • 7.3.3 多线程与多进程的区别
      • 7.3.4 Thread对象的其他属性或方法
      • 7.3.5 守护线程
      • 7.4.6 GIL全局解释器锁
      • 7.4.7 死锁现象与递归锁
      • 7.4.8 信号量,Event,定时器
      • 7.4.9 线程queue
      • 7.4.10 进程池与线程池
    • 7.4 并发编程之协程
      • 7.4.1 协程介绍
      • 7.4.2 greenlet模块
      • 7.4.3 gevent模块
    • 7.5 IO模型
      • 7.5.1 IO模型介绍
      • 7.5.2 阻塞IO
      • 7.5.3 非阻塞IO
      • 7.5.4 多路复用IO
      • 7.5.5 异步IO
      • 7.5.6 IO模型比较分析
      • 7.5.7 selectors模块
    • 7.6 本章小结
  • 第8章 MySQL数据库
    • 8.1 初识数据库
      • 8.1.1 数据库管理软件的由来
      • 8.1.2 数据库概述
      • 8.1.3 mysql安装与基本管理
      • 8.1.4 初识sql语句
    • 8.2 库操作
      • 8.2.1 库的增删改查
    • 8.3 表操作
      • 8.3.1 存储引擎介绍
      • 8.3.2 表的增删改查
      • 8.3.3 数据类型
        • 1 数值类型
        • 2 日期类型
        • 3 字符串类型
        • 4 枚举类型与集合类型
      • 8.3.4 完整性约束
    • 8.4 数据操作
      • 8.4.1 数据的增删改
      • 8.4.2 单表查询
      • 8.4.3 多表查询
    • 8.5 Navicat工具与pymysql模块
      • 8.5.1 图形工具Navicat
      • 8.5.2 pymysql模块
    • 8.6 mysql内置功能
      • 8.6.1 视图
      • 8.6.2 触发器
      • 8.6.3 事务
      • 8.6.4 存储过程
      • 8.6.5 函数
      • 8.6.6 流程控制
    • 8.7 索引原理与慢查询优化
      • 8.7.1 索引原理与慢查询优化(1)
      • 8.7.2 索引原理与慢查询优化(2)
    • 8.8 本章小结
      • 8.8.1 章节作业
  • 第9章 前端开发
    • 9.0 前端内容介绍
      • 前端究竟是个什么鬼?
    • 9.1 HTML
      • 9.1.1 HTML简介
      • 9.1.2 开发环境
      • 9.1.3 HTML标签介绍
      • 9.1.4 HTML文档结构(重点)
      • 9.1.5 HTML注释
      • 9.1.6 head标签相关内容
      • 9.1.7 body标签相关内容(重点)
        • 常用标签一
        • 常用标签二
      • 9.1.8 HTML标签属性
      • 9.1.9 HTML标签分类(重点)
      • 9.1.10 标签嵌套规则(重点)
      • 9.1.11 HTML练习题
    • 9.2 CSS
      • 9.2.1 CSS介绍
      • 9.2.2 CSS语法
      • 9.2.3 CSS引入方式
      • 9.2.4 基本选择器
      • 9.2.5 组合选择器
      • 9.2.6 属性选择器
      • 9.2.7 分组选择器
      • 9.2.8 伪类选择器
      • 9.2.9 伪元素选择器
      • 9.2.10 选择器的优先级(重点)
      • 9.2.11 字体属性
      • 9.2.12 文字属性
      • 9.2.13 背景属性
      • 9.2.14 display属性(重点)
      • 9.2.15 盒模型(重点)
      • 9.2.16 浮动与清除浮动(重点)
      • 9.2.17 background属性(侧重点)
      • 9.2.18 定位(重点)
      • 9.2.19 z-index(重点)
      • 9.2.20 css练习题
    • 9.3 JavaScript
      • 9.3.1 JavaScript简介
      • 9.3.2 ECMAScript 5.0
      • 9.3.3 正则表达式
      • 9.3.4 DOM(重点)
      • 9.3.5 client、offset、scroll系列
      • 9.3.6 定时器
      • 9.3.7 BOM
      • 9.3.8 练习题
    • 9.4 jQuery
      • 9.4.1使用js的一些疼处
      • 9.4.2 js和jquery的区别
      • 9.4.3 jquery文件的引入
      • 9.4.4 jquery选择器用法
      • 9.4.5 jquery对象和DOM对象的转换
      • 9.4.6 jquery的效果
      • 9.4.7 jquery的属性操作
      • 9.4.8 操作input的value值
      • 9.4.9 jquery文档操作
      • 9.4.10 jquery的CSS
      • 9.4.11 jquery的筛选方法
      • 9.4.12 jquery的事件
      • 9.4.13 jquery的Ajax
      • 9.4.14 补充内容
      • 9.4.15 练习题
    • 9.5 Bootstrap
      • 9.5.1 Bootstrap的介绍和响应式@metia媒体查询
      • 9.5.2 Bootstrap的引入和使用
      • 9.5.3 Bootstrap插件的一些常用属性介绍
    • 9.6 前端内容流程导图
  • 第10章 Django
    • 10.1 web应用与http协议
      • 10.1.1 web应用与web框架
    • 10.2 http协议简介
    • 10.3 Django简介
    • 10.4 Django-2的路由层(URLconf)
    • 10.5 Django的视图层
    • 10.6 Django模板层
    • 10.7 Django模型层
      • 模型层一单表操作
      • 模型层二多表操作
    • 10.8 Django组件-cookie与session
    • 10.9 Django组件-forms组件
    • 10.10 Django组件-用户认证
    • 10.11 Django组件-中间件
    • 10.12 Django组件-分页器
    • 10.13 Django与Ajax
    • 10.14习题
  • 第11章 BBS项目(博客系统)
    • 11.1 基于Ajax和用户认证系统的登录验证
    • 11.2 基于Ajax和forms组件的实现注册功能
    • 11.3 系统首页的布局渲染
    • 11.4 个人站点的文章,标签,分类查询
    • 11.5 文章详细页的设计
    • 11.6 点赞与踩灭功能的实现
    • 11.7 评论功能的实现
    • 11.8 基于富文本编辑器框和beautifulSoup模块防止xss攻击
  • 第12章 CRM项目
    • 12.1 权限组件之权限控制
  • 第1章 Python基础(旧版)
    • 1.1 编程语言介绍
    • 1.2 Python介绍
    • 1.3 Python安装
    • 1.4 第一个Python程序
    • 1.5 变量
    • 1.6 程序交互
    • 1.7 基本数据类型
    • 1.8 格式化输出
    • 1.9 基本运算符
    • 1.10 流程控制之 if ... else
    • 1.11 流程控制之 循环
    • 1.12 开发工具IDE
    • 1.13 本章小节
      • 习题答案
    • 1.14 Python开发规范指南
      • 1.14.1 Python风格规范
      • 1.14.2 Python语言规范
  • 第1章 Python基础语法(new)
    • 1.1 编程语言介绍与分类
    • 1.2 Python介绍、发展趋势
    • 1.3 Python环境安装
    • 1.4 开发你的第一个Python程序
    • 1.5 选择最好用的PyCharm IDE
    • 1.6 变量
    • 1.7 注释
    • 1.8 基本数据类型
    • 1.9 读取用户指令
    • 1.10 格式化打印
    • 1.11 运算符
    • 1.12 流程控制之if...else
    • 1.13 流程控制之while循环
    • 1.14 本章练习题&作业
  • 第2章 Python基础-数据类型和文件操作(new)
    • 2.1 上章补充-Bytes类型
  • 第3章 Python基础-函数编程(new)
  • 第4章 Python基础 常用模块(new)
Powered by GitBook
On this page
  • 一 引子
  • 二 协程介绍

Was this helpful?

  1. 第7章 并发编程
  2. 7.4 并发编程之协程

7.4.1 协程介绍

Previous7.4 并发编程之协程Next7.4.2 greenlet模块

Last updated 5 years ago

Was this helpful?

  • 掌握什么是协程

本节时长需控制在15分钟内

一 引子

本节的主题是基于单线程来实现并发,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发,为此我们需要先回顾下并发的本质:切换+保存状态

cpu正在运行一个任务,会在两种情况下切走去执行其他的任务(切换由操作系统强制控制),一种情况是该任务发生了阻塞,另外一种情况是该任务计算的时间过长或有一个优先级更高的程序替代了它
ps:在介绍进程理论时,提及进程的三种执行状态,而线程才是执行单位,所以也可以将上图理解为线程的三种状态

一:其中第二种情况并不能提升效率,只是为了让cpu能够雨露均沾,实现看起来所有任务都被“同时”执行的效果,如果多个任务都是纯计算的,这种切换反而会降低效率。为此我们可以基于yield来验证。yield本身就是一种在单线程下可以保存任务运行状态的方法,我们来简单复习一下:

1 yiled可以保存状态,yield的状态保存与操作系统的保存线程状态很像,但是yield是代码级别控制的,更轻量级
2 send可以把一个函数的结果传给另外一个函数,以此实现单线程内程序之间的切换

单纯地切换反而会降低运行效率

#串行执行
import time
def consumer(res):
    '''任务1:接收数据,处理数据'''
    pass

def producer():
    '''任务2:生产数据'''
    res=[]
    for i in range(10000000):
        res.append(i)
    return res

start=time.time()
#串行执行
res=producer()
consumer(res) #写成consumer(producer())会降低执行效率
stop=time.time()
print(stop-start) #1.5536692142486572



#基于yield并发执行
import time
def consumer():
    '''任务1:接收数据,处理数据'''
    while True:
        x=yield

def producer():
    '''任务2:生产数据'''
    g=consumer()
    next(g)
    for i in range(10000000):
        g.send(i)

start=time.time()
#基于yield保存状态,实现两个任务直接来回切换,即并发的效果
#PS:如果每个任务中都加上打印,那么明显地看到两个任务的打印是你一次我一次,即并发执行的.
producer()

stop=time.time()
print(stop-start) #2.0272178649902344

二:第一种情况的切换。在任务一遇到io情况下,切到任务二去执行,这样就可以利用任务一阻塞的时间完成任务二的计算,效率的提升就在于此。

yield并不能实现遇到io切换

import time
def consumer():
    '''任务1:接收数据,处理数据'''
    while True:
        x=yield

def producer():
    '''任务2:生产数据'''
    g=consumer()
    next(g)
    for i in range(10000000):
        g.send(i)
        time.sleep(2)

start=time.time()
producer() #并发执行,但是任务producer遇到io就会阻塞住,并不会切到该线程内的其他任务去执行

stop=time.time()
print(stop-start)

对于单线程下,我们不可避免程序中出现io操作,但如果我们能在自己的程序中(即用户程序级别,而非操作系统级别)控制单线程下的多个任务能在一个任务遇到io阻塞时就切换到另外一个任务去计算,这样就保证了该线程能够最大限度地处于就绪态,即随时都可以被cpu执行的状态,相当于我们在用户程序级别将自己的io操作最大限度地隐藏起来,从而可以迷惑操作系统,让其看到:该线程好像是一直在计算,io比较少,从而更多的将cpu的执行权限分配给我们的线程。

协程的本质就是在单线程下,由用户自己控制一个任务遇到io阻塞了就切换另外一个任务去执行,以此来提升效率。为了实现它,我们需要找寻一种可以同时满足以下条件的解决方案:
1. 可以控制多个任务之间的切换,切换之前将任务的状态保存下来,以便重新运行时,可以基于暂停的位置继续执行。
2. 作为1的补充:可以检测io操作,在遇到io操作的情况下才发生切换

二 协程介绍

协程:是单线程下的并发,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。、

需要强调的是:

1. python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其他线程运行)
2. 单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率(!!!非io操作的切换与效率无关)

对比操作系统控制线程的切换,用户在单线程内控制协程的切换

优点如下:

1. 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
2. 单线程内就可以实现并发的效果,最大限度地利用cpu

缺点如下:

1. 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程
2. 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程

总结协程特点:

  1. 必须在只有一个单线程里实现并发

  2. 修改共享数据不需加锁

  3. 用户程序里自己保存多个控制流的上下文栈

  4. 附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了gevent模块(select机制))